หน้าเว็บ

วันจันทร์ที่ 29 ตุลาคม พ.ศ. 2561

เทคโนโลยีชีวภาพ

เทคโนโลยีชีวภาพ (Biotechnology)


เทคโนโลยีชีวภาพ (อังกฤษBiotechnology) คือ การใช้ระบบและสิ่งที่มีชีวิตเพื่อพัฒนาหรือสร้างผลิตภัณฑ์ที่มีประโยชน์, หรือ "การประยุกต์ใช้เทคโนโลยีใดๆ ที่ใช้ระบบชีวภาพ, สิ่งที่มีชีวิตหรืออนุพันธ์ของสิ่งที่มีชีวิตนั้น, เพื่อสร้างหรือปรับเปลี่ยนผลิตภัณฑ์หรือกระบวนการสำหรับการใช้งานเฉพาะอย่าง" (อนุสัญญาสหประชาชาติว่าด้วยความหลากหลายทางชีวภาพ, ศิลปะ. 2)  ขึ้นอยู่กับเครื่องมือและการประยุกต์ใช้งาน, มันมักจะคาบเกี่ยวกับสาขา (ที่เกี่ยวข้องกับ) วิศวกรรมชีวภาพและวิศวกรรมชีวการแพทย์
เป็นพัน ๆ ปีมาแล้วที่มนุษย์ได้ใช้เทคโนโลยีชีวภาพในการเกษตร, การผลิตอาหาร, และการทำยารักษาโรค. คำนี้ส่วนใหญ่เชื่อว่าจะถูกประดิษฐ์ขึ้นในปี 1919 โดยวิศวกรฮังการี Károly Ereky. ในช่วงปลายทศวรรษที่ 20 และต้นศตวรรษที่ 21, เทคโนโลยีชีวภาพได้ขยายไปรวมถึงวิทยาศาสตร์ใหม่ ๆ และหลากหลายเช่น genomics, เทคโนโลยียีน recombinant, ภูมิคุ้มกันประยุกต์ (อังกฤษapplied immunology), และการพัฒนาวิธีการรักษาและการตรวจวินิจฉัยทางเภสัชกรรม"
แนวคิดกว้างของ "เทคโนชีวภาพ" หรือ "เทคโนโลยีชีวภาพ" ครอบคลุมหลากหลายของวิธีการสำหรับการปรับเปลี่ยนสิ่งที่มีชีวิตตามวัตถุประสงค์ของมนุษย์, การกลับไปที่การเพาะพันธ์ (อังกฤษdomestication) สัตว์, การเพาะปลูกของพืช, และ "การปรับปรุง" พวกเหล่านี้ผ่านโปรแกรมการปรับปรุงพันธุ์ที่ใช้ตัวเลือกประดิษฐ์ (อังกฤษartificial selection) และการผสมข้ามพันธุ์. การใช้งานที่ทันสมัยยังรวมถึงพันธุวิศวกรรมเช่นเดียวกับเทคโนโลยีการเพาะเลี้ยงเซลล์และเนื้อเยื่อ. สมาคมเคมีอเมริกันกำหนดเทคโนโลยีชีวภาพเป็นการประยุกต์ใช้สิ่งมีชีวิต, ระบบ, หรือกระบวนการทางชีวภาพโดยอุตสาหกรรมต่าง ๆ เพื่อการเรียนรู้เกี่ยวกับวิทยาศาสตร์ของชีวิตและการปรับปรุงมูลค่าของวัสดุและสิ่งมีชีวิตเช่นยา, พืช, และปศุสัตว์. เทคโนโลยีชีวภาพยังเขียนในทางชีววิทยาศาสตร์ล้วน ๆ (การเพาะเลี้ยงเซลล์สัตว์, ชีวเคมี, ชีววิทยาของเซลล์, ตัวอ่อน, พันธุศาสตร์, จุลชีววิทยา, และชีววิทยาโมเลกุล) ในหลายกรณีมันยังขึ้นอยู่กับความรู้และวิธีการจากภายนอกทรงกลมของชีววิทยาอีกด้วย ซึ่งรวมถึง:

  • ชีวะสารสนเทศ, สาขาใหม่ของวิทยาการคอมพิวเตอร์
  • วิศวกรรมกระบวนการชีวภาพ
  • ชีวะหุ่นยนต์
  • วิศวกรรมเคมี


ในทางตรงกันข้าม, วิทยาศาสตร์ชีวภาพที่ทันสมัย (รวมถึงแม้กระทั่งแนวคิดเช่นนิเวศวิทยาโมเลกุล) จะถูกโอบแล้วอย่างใกล้ชิดและขึ้นอยู่อย่างหนักกับวิธีการที่ได้รับการพัฒนาผ่านทางเทคโนโลยีชีวภาพและสิ่งที่เป็นความคิดโดยทั่วไปว่าเป็นอุตสาหกรรมวิทยาศาสตร์ของชีวิต. เทคโนโลยีชีวภาพคือการวิจัยและการพัฒนาในห้องปฏิบัติการโดยใช้ชีวสารสนเทศสำหรับการสำรวจ, การสกัด, การใช้ประโยชน์และการผลิตจากสิ่งมีชีวิตใด ๆ และแหล่งที่มาใด ๆ ของชีวมวลโดยใช้วิธีการวิศวกรรมชีวเคมีที่ผลิตภัณฑ์ที่มีมูลค่าเพิ่มสูงอาจจะมีการวางแผน (เช่นสร้างขึ้นใหม่โดยการสังเคราะห์), ที่มีการคาดการณ์, ที่มีการสร้างรูป, ที่มีการพัฒนา, ที่มีการผลิตและจำหน่ายเพื่อวัตถุประสงค์ในการดำเนินงานอย่างยั่งยืน (สำหรับผลตอบแทนจากเงินลงทุนเริ่มแรกที่ไร้ความลึกในด้าน R & D) และการได้รับสิทธิบัตรคงทน (สำหรับสิทธิพิเศษสุดสำหรับการขาย, และก่อนหน้าที่จะได้นี้เพื่อได้รับความเห็นชอบในระดับชาติและนานาชาติจากผลการทดลองในสัตว์ทดลองและมนุษย์ทดลอง, โดยเฉพาะอย่างยิ่งในสาขาเภสัชกรรมของเทคโนโลยีชีวภาพเพื่อป้องกันผลข้างเคียงที่ไม่สามารถตรวจพบหรือความกังวลด้านความปลอดภัยใด ๆ จากการใช้ผลิตภัณฑ์).

ในทางตรงกันข้าม, ชีววิศวกรรมทั่วไปถูกมองว่าเป็นสาขาที่เน้นมากขึ้นสำหรับวิธีการระบบที่สูงขึ้น (ไม่จำเป็นต้องมีการเปลี่ยนแปลงหรือมีการใช้วัสดุชีวภาพ"โดยตรง") สำหรับการเชื่อมต่อกับสิ่งมีชีวิตและการใช้ประโยชน์จากสิ่งมีชีวิตนั้น. วิศวกรรมชีวภาพคือการประยุกต์ใช้หลักการของวิศวกรรมและวิทยาศาสตร์ธรรมชาติกับเนื้อเยื่อ, เซลล์และโมเลกุล. แบบนี้ถือได้ว่าเป็นการใช้ความรู้จากการทำงานกับชีววิทยาที่มีการจัดการเพื่อให้บรรลุผลที่สามารถปรับปรุงฟังก์ชันในพืชและสัตว์. เกี่ยวเนื่องกัน, วิศวกรรมชีวการแพทย์เป็นสาขาที่ทับซ้อนกันสาขาหนึ่งที่มักจะดึงออกมาและประยุกต์ใช้"เทคโนโลยีชีวภาพ" (ตามคำนิยามที่หลากหลาย), โดยเฉพาะอย่างยิ่งในสาขาย่อยของชีวการแพทย์และ/หรือวิศวกรรมเคมีเช่นวิศวกรรมเนื้อเยื่อ, วิศวกรรมชีวเวชภัณฑ์, และพันธุวิศวกรรม.


การประยุกต์ใช้งาน

           เทคโนโลยีชีวภาพมีการประยุกต์ใช้งานในสี่พื้นที่อุตสาหกรรมที่สำคัญ, ได้แก่การดูแลสุขภาพ (การแพทย์), การผลิตพืชและการเกษตร, การใช้พืชและผลิตภัณฑ์อื่น ๆ ที่ไม่ใช่อาหาร (เช่นพลาสติกย่อยสลายแบบชีวภาพ, น้ำมันพืช, เชื้อเพลิงชีวภาพ), และการใช้งานด้านสิ่งแวดล้อม.
ตัวอย่างเช่น, การประยุกต์ใช้แบบหนึ่งของเทคโนโลยีชีวภาพคือการใช้ควบคุมสิ่งมีชีวิตเพื่อผลิตสินค้าเกษตรอินทรีย์ (เช่นเบียร์และผลิตภัณฑ์นม). อีกตัวอย่างหนึ่งคือการใช้เชื้อแบคทีเรียที่ปรากฏตามธรรมชาติโดยอุตสาหกรรมเหมืองแร่ในการชะล้างด้วยวิธีชีวภาพ (อังกฤษ: bioleaching). เทคโนโลยีชีวภาพนอกจากนี้ยังใช้ในการรีไซเคิล, การบำบัดของเสีย, การทำความสะอาดสถานที่ปนเปื้อนจากกิจกรรมอุตสาหกรรม (bioremediation) และการผลิตอาวุธชีวภาพอีกด้วย.

ชุดของสาขาที่ได้รับการระบุว่าสาขาของเทคโนโลยีชีวภาพ; ตัวอย่างเช่น:
ชีวสารสนเทศ (อังกฤษ: Bioinformatics) เป็นสาขาสหวิทยาการที่กล่าวถึงปัญหาทางชีวภาพโดยใช้เทคนิคคอมพิวเตอร์, และทำให้องค์กรมีความรวดเร็วเช่นเดียวกับการวิเคราะห์ข้อมูลทางชีวภาพที่เป็นไปได้. สาขานี้อาจหมายถึง"ชีววิทยาคอมพิวเตอร์", และสามารถนิยามว่าเป็น "ชีววิทยาแบบแนวความคิดในแง่ของโมเลกุลแล้วประยุกต์เทคนิคด้านสารสนเทศเพื่อทำความเข้าใจและจัดระเบียบข้อมูลที่เกี่ยวข้องกับโมเลกุลเหล่านี้ในขนาดที่ใหญ่"

ชีวสารสนเทศมีบทบาทสำคัญในด้านต่าง ๆ,เช่นพันธุกรรมฟังก์ชัน (อังกฤษ: functional genomics), พันธุกรรมโครงสร้าง (อังกฤษ: structural genomics), และพันธุกรรมโปรตีน (อังกฤษ: proteomics), และชีวสารสนเทศยังเป็นตัวสร้างรูปแบบขององค์ประกอบสำคัญในภาคเทคโนโลยีชีวภาพและภาคเภสัชกรรมอีกด้วย.
เทคโนโลยีชีวภาพสีฟ้า เป็นคำที่ถูกนำมาใช้เพื่ออธิบายการใช้งานทางทะเลและสัตว์น้ำของเทคโนโลยีชีวภาพ แต่การใช้งานจะค่อนข้างหายาก.
เทคโนโลยีชีวภาพสีเขียว เป็นเทคโนโลยีชีวภาพที่ประยุกต์กับกระบวนการทางการเกษตร. ตัวอย่างหนึ่งจะเป็นการเลือกและการเพาะพันธ์ของพืชโดยวิธีการกระจายแบบไมโคร (อังกฤษ: micropropagation). อีกตัวอย่างหนึ่งคือการออกแบบของพืชดัดแปรพันธุกรรม (แม่แบบ:Lang=en) เพื่อปลูกภายใต้สภาพแวดล้อมเฉพาะโดยการใช้ (หรือไม่ใช้) สารเคมี. ความหวังอย่างหนึ่งคือเทคโนโลยีชีวภาพสีเขียวอาจผลิตโซลูชั่นที่เป็นมิตรกับสิ่งแวดล้อมมากขึ้นกว่าอุตสาหกรรมเกษตรแบบดั้งเดิม. ตัวอย่างหนึ่งของเรื่องนี้ก็คือวิศวกรรมของพืชเพื่อแสดงยาฆ่าแมลง, ซึ่งจะสิ้นสุดความต้องการของแอพลิเคชันภายนอกของยาฆ่าแมลง. ตัวอย่างหนึ่งของวิศวกรรมนี้จะเป็นข้าวโพดแปลงพันธุกรรม (อังกฤษ: Transgenic maize หรือ Bt corn). ผลิตภัณฑ์ของเทคโนโลยีชีวภาพสีเขียวเช่นนี้ในท้ายที่สุดแล้วจะเป็นมิตรต่อสิ่งแวดล้อมหรือไม่เป็นหัวข้อของการอภิปรายที่น่าสนใจมาก.
เทคโนโลยีชีวภาพสีแดง จะประยุกต์เข้ากับกระบวนการทางการแพทย์. บางตัวอย่างก็คือการออกแบบของสิ่งมีชีวิตเพื่อผลิตยาปฏิชีวนะ, และการวิศวกรรมของการรักษาทางพันธุกรรมผ่านการยักย้ายถ่ายเททางพันธุกรรม (อังกฤษ: genetic manipulation).
เทคโนโลยีชีวภาพสีขาว,หรือที่เรียกว่าอุตสาหกรรมเทคโนโลยีชีวภาพ, เป็นเทคโนโลยีชีวภาพที่ประยุกต์เข้ากับกระบวนการทางอุตสาหกรรม. ตัวอย่างหนึ่งคือการออกแบบของสิ่งมีชีวิตในการผลิตสารเคมีที่มีประโยชน์. อีกตัวอย่างหนึ่งคือการใช้เอนไซม์เป็นตัวเร่งปฏิกิริยาให้อุตสาหกรรมเพื่อผลิตสารเคมีที่มีค่าหรือเพื่อทำลายสารเคมีที่ก่อให้เกิดมลพิษ/อันตราย. เทคโนโลยีชีวภาพสีขาวมีแนวโน้มที่จะใช้พลังงานน้อยกว่ากระบวนการแบบดั้งเดิมที่ใช้ในการผลิตสินค้าอุตสาหกรรม
การลงทุนและการส่งออกของเศรษฐกิจทั้งหมดของประเภทเหล่านี้ของการประยุกต์เทคโนโลยีชีวภาพจะถูกเรียกว่าเป็น "Bioeconomy".

ยา

ในสาขาเภสัชกรรม, เทคโนโลยีชีวภาพสมัยใหม่พบการประยุกต์ใช้ในด้านต่าง ๆ เช่นการค้นพบและการผลิตยาเสพติด, pharmacogenomics, และการทดสอบทางพันธุกรรม (หรือการคัดกรองทางพันธุกรรม).

Pharmacogenomics (การรวมกันของเภสัชวิทยาและพันธุกรรม) เป็นเทคโนโลยีที่วิเคราะห์ว่าสิ่งที่ได้จากพันธุกรรมมีผลต่อการตอบสนงขอแต่ละบุคคลเป็นอย่างไร มันเกี่ยวข้องกับอิทธิพลของการแปรเปลี่ยนทางพันธุกรรมที่มีต่อการตอบสนองของยาในผู้ป่วยโดยการเทียบเคียงการแสดงออกของยีน (อังกฤษ: gene expression) หรือความหลากหลายแบบ nucleotide เดียว (อังกฤษ: single-nucleotide polymorphism) กับประสิทธิภาพหรือความเป็นพิษของยา โดยการทำเช่นนั้น, pharmacogenomics มีวัตถุประสงค์เพื่อพัฒนาวิธีการที่มีเหตุผลในการเพิ่มประสิทธิภาพการรักษาด้วยยา, ที่ขึ้นกับขนืดของพันธุกรรมของผู้ป่วย,เพื่อให้แน่ใจว่าได้รับประสิทธิภาพสูงสุดด้วยผลกระทบในทางตรงกันข้ามที่น้อยที่สุด วิธีการดังกล่าวสัญญาว่าจะให้การถือกำเนิดของ "ยาส่วนบุคคล"; ที่ยาทั้งหลายและยาผสมได้รับการปรับปรุงให้เหมาะสมกับพันธุกรรมที่ไม่ซ้ำกันของแต่ละบุคคล

เทคโนโลยีชีวภาพมีส่วนร่วมในการค้นพบและการผลิตของยาโมเลกุลขนาดเล็กแบบดั้งเดิมเช่นเดียวกับยาที่เป็นผลิตภัณฑ์ของเทคโนโลยีชีวภาพ - ชีวเภสัช (อังกฤษ: biopharmaceutics). เทคโนโลยีชีวภาพสมัยใหม่สามารถนำมาใช้ในการผลิตยาที่มีอยู่ค่อนข้างง่ายและราคาถูก. ผลิตภัณฑ์ดัดแปลงพันธุกรรมตัวแรกถูกออกแบบมาเพื่อรักษาโรคของมนุษย์. เพื่อยกหนึ่งตัวอย่าง, ในปี 1978 Genentech ได้พัฒนาอินซูลิน humanized สังเคราะห์โดยการเชื่อมยีนของมันกับเวกเตอร์พลาสมิด (อังกฤษ: plasmid vector) ที่ถูกใส่เข้าไปในแบคทีเรีย "Escherichia coli". อินซูลิน, ที่ใช้กันอย่างแพร่หลายในการรักษาโรคเบาหวาน, ได้รับการสกัดก่อนหน้านี้จากตับอ่อนของสัตว์ในโรงฆ่าสัตว์ (วัวและ/หรือหมู). แบคทีเรียดัดแปลงพันธุกรรมที่เกิดขึ้นจะช่วยในการผลิตปริมาณมหาศาลของอินซูลินสังเคราะห์เพื่อมนุษย์ที่ค่าใช้จ่ายที่ค่อนข้างต่ำ เทคโนโลยีชีวภาพนอกจากนี้ยังช่วยในการรักษาที่เกิดขึ้นใหม่เช่นการรักษาด้วยยีน (อังกฤษ: gene therapy). การประยุกต์ใช้เทคโนโลยีชีวภาพกับวิทยาศาสตร์พื้นฐาน (เช่นผ่านทางโครงการจีโนมมนุษย์) ยังได้ปรับปรุงอย่างมากในความเข้าใจของเราเกี่ยวกับชีววิทยาและเนื่องจากความรู้ทางวิทยาศาสตร์ของเราเกี่ยวกับชีววิทยาปกติและของโรคได้เพิ่มขึ้น, ความสามารถของเราในการพัฒนายาใหม่ในการรักษาโรคที่รักษาไม่หายไปก่อนหน้านี้ได้เพิ่มขึ้นเช่นกัน

การทดสอบทางพันธุกรรมช่วยในการวินิจฉัยทางพันธุกรรมของความไวต่อโรคทางกรรมพันธุ์, และยังสามารถใช้ในการกำหนดผู้เป็นบิดามารดาของเด็ก (แม่และพ่อทางพันธุกรรม) หรือโดยทั่วไปบรรพบุรุษของบุคคลนั้น. นอกเหนือจากการศึกษาโครโมโซมในระดับของยีนแต่ละบุคคล, การทดสอบทางพันธุกรรมในความหมายที่กว้างขึ้นจะรวมถึงการทดสอบทางชีวเคมีสำหรับการปรากฏตัวที่เป็นไปได้ของโรคทางพันธุกรรม, หรือรูปแบบการกลายพันธุ์ของยีนที่เกี่ยวข้องกับความเสี่ยงที่เพิ่มขึ้นของการพัฒนาความผิดปกติทางพันธุกรรม. การทดสอบทางพันธุกรรมจะระบุการเปลี่ยนแปลงในโครโมโซม, ยีน, หรือโปรตีน หลายครั้ง, การทดสอบจะใช้เพื่อหาการเปลี่ยนแปลงที่เกี่ยวข้องกับความผิดปกติได้รับการถ่ายทอดมา. ผลของการทดสอบทางพันธุกรรมสามารถยืนยันหรือตัดทิ้งสภาพทางพันธุกรรมที่น่าสงสัยหรือช่วยในการกำหนดโอกาสของบุคคลในการพัฒนาหรือการหลุดพ้นความผิดปกติทางพันธุกรรม. ณ ปี 2011, หลายร้อยการทดสอบทางพันธุกรรมได้ถูกนำมาใช้ เนื่องจากการทดสอบทางพันธุกรรมอาจจะเปิดปัญหาด้านจริยธรรมหรือด้านจิตวิทยา, การทดสอบทางพันธุกรรมมักจะมาพร้อมการให้คำปรึกษาทางพันธุกรรม.


การเกษตร

พืชดัดแปลงพันธุกรรม (อังกฤษ: Genetically modified crops) หรือ "พืชจีเอ็ม" หรือ "พืชเทคโนโลยีชีวภาพ" เป็นพืชที่ใช้ในการเกษตร, ดีเอ็นเอของมันได้รับการแก้ไขโดยใช้เทคนิคทางพันธุวิศวกรรม. ในกรณีส่วนใหญ่จุดมุ่งหมายคือเพื่อแนะนำลักษณะทางชีวภาพใหม่ให้กับพืชที่ไม่ได้เกิดขึ้นตามธรรมชาติในสปีชีส์.


ตัวอย่างในพืชอาหารรวมถึงความต้านทานต่อแมลงศัตรูพืชบางอย่าง โรค, สภาพแวดล้อมที่เครียด, ความต้านทานต่อการบำบัดทางเคมี (เช่นความต้านทานต่อสารกำจัดวัชพืช), การลดลงของการเน่าเสีย, หรือการปรับปรุงในรายละเอียดของสารอาหารของพืช หลายตัวอย่างในพืชที่ไม่ใช่อาหารรวมถึงการผลิตของตัวแทนยา (อังกฤษ: pharmaceutical agent) , เชื้อเพลิงชีวภาพ, และสินค้าอื่น ๆ ที่มีประโยชน์ต่อวงการอุตสาหกรรม, เช่นเดียวกับการบำบัดทางชีวภาพ (อังกฤษ: bioremediation)

เกษตรกรได้ใช้เทคโนโลยีจีเอ็มกันอย่างแพร่หลาย. ระหว่างปี 1996 ถึง 2011, พื้นที่ผิวทั้งหมดของที่ดินที่ใช้ปลูกพืชจีเอ็มได้เพิ่มขึ้นจาก 17,000 ตารางกิโลเมตร (4,200,000 เอเคอร์) เป็น 1,600,000 ตารางกิโลเมตร (395,000,000 เอเคอร์)  10% ของพื้นที่เพาะปลูกของโลกถูกนำมาปลูกพืชจีเอ็มในปี 2010
ณ ปี 2011, พืชดัดแปรพันธุกรรมที่แตกต่างกัน 11 ชนิดได้รับการปลูกในเชิงพาณิชย์บน 395 ล้านเอเคอร์ (160 ล้านเฮคตาร์) ใน 29 ประเทศเช่นสหรัฐอเมริกา, บราซิล, อาร์เจนตินา, อินเดีย, แคนาดา, จีน, ปารากวัย, ปากีสถาน, แอฟริกาใต้, อุรุกวัย, โบลิเวีย, ออสเตรเลีย, ฟิลิปปินส์, พม่า, บูร์กินาฟาโซ, เม็กซิโกและสเปน

อาหารดัดแปลงพันธุกรรมเป็นอาหารที่ผลิตจากสิ่งมีชีวิตที่มีการเปลี่ยนแปลงอย่างเจาะจงในดีเอ็นเอของพวกมันโดยใช้วิธีการทางพันธุวิศวกรรม. เทคนิคเหล่านี้ได้ยอมให้มีการเปลี่ยนแปลงลักษณะของพืชแบบใหม่เช่นเดียวกับการควบคุมที่มากขึ้นกว่าโครงสร้างทางพันธุกรรมของอาหารมากกว่าโดยวิธีการก่อนหน้านี้เช่นการคัดเลือกพันธุ์และการปรับปรุงพันธุ์แบบกลายพันธุ์ (อังกฤษ: mutation breeding)  การขายเชิงพาณิชย์ของอาหารดัดแปลงพันธุกรรมเริ่มต้นขึ้นในปี 1994, เมื่อ Calgene วางตลาดมะเขือเทศสุกช้าชื่อ Flavr Savr ครั้งแรกของบริษัท จนถึงวันนี้ การดัดแปลงพันธุกรรมของอาหารส่วนมากได้เน้นเป็นหลักในการปลูกพืชเงินสด (อังกฤษ: cash crop) ในความต้องการสูงโดยเกษตรกรเช่นถั่วเหลืองแปลงพันธุกรรม, ข้าวโพดแปลงพันธุกรรม, คาโนลา, และน้ำมันเมล็ดฝ้าย. เหล่านี้ได้รับการวิศวกรรมให้มีความต้านทานต่อเชื้อโรคและสารเคมีกำจัดวัชพืชและมีรูปแบบของสารอาหารที่ดีกว่า. ปศุสัตว์จีเอ็มยังได้รับการพัฒนาเชิงทดลอง, แม้ว่า ณ เดือนพฤศจิกายน 2013 ยังไม่มีอยู่ในตลาดขณะนั้น

มีฉันทามติทางวิทยาศาสตร์ในวงกว้างว่าอาหารในตลาดที่ได้มาจากพืชจีเอ็มโอไม่มีความเสี่ยงมากต่อสุขภาพของมนุษย์กว่าอาหารธรรมดา พืชจีเอ็มยังให้ประโยชน์ทางนิเวศวิทยาอีกด้วย, หากไม่ใช้มากเกินไป อย่างไรก็ตามฝ่ายตรงข้ามได้คัดค้านพืชจีเอ็มในหลายเหตุผล, รวมทั้งความกังวลด้านสิ่งแวดล้อม, ว่าอาหารที่ผลิตจากพืชจีเอ็มจะมีความปลอดภัยหรือไม่, ว่าพืชจีเอ็มมีความจำเป็นเพื่อตอบสนองความต้องการอาหารของโลกหรือไม่, และความกังวลทางเศรษฐกิจที่เกิดขึ้นจากความจริงที่ว่าสื่งมีชีวิตเหล่านี้อยู่ภายใต้กฎหมายทรัพย์สินทางปัญญา.


เทคโนโลยีชีวภาพอุตสาหกรรม

เทคโนโลยีชีวภาพอุตสาหกรรม (ที่รู้จักกันส่วนใหญ่ในยุโรปเป็นเทคโนโลยีชีวภาพสีขาว) เป็นการประยุกต์ใช้เทคโนโลยีชีวภาพเพื่อการอุตสาหกรรม, รวมถึงอุตสาหกรรมการหมัก. มันจะรวมถึงการปฏิบัติในการใช้เซลล์เช่นจุลินทรีย์, หรือส่วนประกอบของเซลล์เช่นเอนไซม์, เพื่อสร้างผลิตภัณฑ์ที่มีประโยชน์ในภาคอุตสาหกรรมเช่นสารเคมี, อาหารและอาหารสัตว์, ผงซักฟอก, กระดาษและเยื่อกระดาษ, สิ่งทอและเชื้อเพลิงชีวภาพ ในการทำเช่นนั้น, เทคโนโลยีชีวภาพใช้วัตถุดิบหมุนเวียนและอาจช่วยลดการปล่อยก๊าซเรือนกระจกและย้ายออกจากเศรษฐกิจที่มีฐานมาจากปิโตรเคมี








ไม่มีความคิดเห็น:

แสดงความคิดเห็น